cortex_m3_stm32嵌入式学习笔记(十):输入捕捉实验(定时器的输入捕捉)

ARM 498浏览

输入捕获模式可以用来测量脉冲宽度或者测量频率。 STM32 的定时器,除了 TIM6 和 TIM7其他定时器都有输入捕获功能。 STM32 的输入捕获,简单的说就是通过检测 TIMx_CHx 上的边沿信号,在边沿信号发生跳变(比如上升沿/下降沿)的时候,将当前定时器的值( TIMx_CNT)存放到对应的通道的捕获/比较寄存器( TIMx_CCRx)里面,完成一次捕获。同时还可以配置捕获时是否触发中断/DMA 等。

本章我们用到 TIM2_CH1 来捕获高电平脉宽,也就是要先设置输入捕获为上升沿检测,记录发生上升沿的时候 TIM2_CNT 的值。然后配置捕获信号为下降沿捕获,当下降沿到来时,发生捕获,并记录此时的 TIM2_CNT 值。这样,前后两次 TIM2_CNT 之差,就是高电平的脉宽,同时 TIM2 的计数频率我们是知道的,从而可以计算出高电平脉宽的准确时间。

至于为什么TIM2_CH1来测量WK_UP的脉宽。。看图:


      

显然,TIM_CH1是连在PA0上的。。

本节实验是在上节PWM的基础上改动的

timer.c

#include "timer.h" #include "led.h" #include "sys.h" #include "usart.h" //PWM 输出初始化 //arr:自动重装值 //psc:时钟预分频数 void TIM1_PWM_Init(u16 arr,u16 psc) {   	 GPIO_InitTypeDef GPIO_InitStructure; 	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure; 	TIM_OCInitTypeDef  TIM_OCInitStructure;  	RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);//   	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA , ENABLE);  //使能GPIO外设时钟使能 	                                                                     	     //设置该引脚为复用输出功能,输出TIM1 CH2的PWM脉冲波形 	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; //TIM_CH2 	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;  //复用推挽输出 	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 	GPIO_Init(GPIOA, &GPIO_InitStructure);  	 	TIM_TimeBaseStructure.TIM_Period = arr; //设置在下一个更新事件装入活动的自动重装载寄存器周期的值	 80K 	TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置用来作为TIMx时钟频率除数的预分频值  不分频 	TIM_TimeBaseStructure.TIM_ClockDivision = 0; //设置时钟分割:TDTS = Tck_tim 	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式 	TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位    	TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2; //选择定时器模式:TIM脉冲宽度调制模式2 	TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //比较输出使能 	TIM_OCInitStructure.TIM_Pulse = 0; //设置待装入捕获比较寄存器的脉冲值 	TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; //输出极性:TIM输出比较极性高 	TIM_OC1Init(TIM1, &TIM_OCInitStructure);  //根据TIM_OCInitStruct中指定的参数初始化外设TIMx    TIM_CtrlPWMOutputs(TIM1,ENABLE);	//MOE 主输出使能	  	TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);  //CH1预装载使能	  	 	TIM_ARRPreloadConfig(TIM1, ENABLE); //使能TIMx在ARR上的预装载寄存器 	 	TIM_Cmd(TIM1, ENABLE);  //使能TIM1       } void TIM2_Cap_Init(u16 arr,u16 psc) {	  	TIM_ICInitTypeDef  TIM2_ICInitStructure; 	GPIO_InitTypeDef GPIO_InitStructure; 	TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;  	NVIC_InitTypeDef NVIC_InitStructure;  	RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);	//使能TIM2时钟  	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);  //使能GPIOA时钟 	 	GPIO_InitStructure.GPIO_Pin  = GPIO_Pin_0;  //PA0 清除之前设置   	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPD; //PA0 输入   	GPIO_Init(GPIOA, &GPIO_InitStructure); 	GPIO_ResetBits(GPIOA,GPIO_Pin_0);						 //PA0 下拉 	 	//初始化定时器2 TIM2	  	TIM_TimeBaseStructure.TIM_Period = arr; //设定计数器自动重装值  	TIM_TimeBaseStructure.TIM_Prescaler =psc; 	//预分频器    	TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; //设置时钟分割:TDTS = Tck_tim 	TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //TIM向上计数模式 	TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); //根据TIM_TimeBaseInitStruct中指定的参数初始化TIMx的时间基数单位    	//初始化TIM2输入捕获参数 	TIM2_ICInitStructure.TIM_Channel = TIM_Channel_1; //CC1S=01 	选择输入端 IC1映射到TI1上   	TIM2_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;	//上升沿捕获   	TIM2_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI; //映射到TI1上   	TIM2_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;	 //配置输入分频,不分频    	TIM2_ICInitStructure.TIM_ICFilter = 0x00;//IC1F=0000 配置输入滤波器 不滤波   	TIM_ICInit(TIM2, &TIM2_ICInitStructure); 	 	//中断分组初始化 	NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;  //TIM2中断 	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;  //先占优先级2级 	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;  //从优先级0级 	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能 	NVIC_Init(&NVIC_InitStructure);  //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器  	 	TIM_ITConfig(TIM2,TIM_IT_Update|TIM_IT_CC1,ENABLE);//允许更新中断 ,允许CC1IE捕获中断	 	   TIM_Cmd(TIM2,ENABLE ); 	//使能定时器2   } u8 TIM2CH1_CAPTURE_STA=0; //输入捕获状态 //bit7:捕获完成标志  //bit6:捕获到高点平标志 //bit5~0:捕获到高电平后定时器溢出的次数  u32 TIM2CH1_CAPTURE_VAL;//输入捕获值 void TIM2_IRQHandler(void) {    	if((TIM2CH1_CAPTURE_STA&0X80)==0)//还未成功捕获	 	{	   		if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) 		  		{	     			if(TIM2CH1_CAPTURE_STA&0X40)//已经捕获到高电平了 			{ 				if((TIM2CH1_CAPTURE_STA&0X3F)==0X3F)//高电平太长了 				{ 					TIM2CH1_CAPTURE_STA|=0X80;//标记成功捕获了一次 					TIM2CH1_CAPTURE_VAL=0XFFFF; 				}else TIM2CH1_CAPTURE_STA++; 			}	  		} 	if (TIM_GetITStatus(TIM2, TIM_IT_CC1) != RESET)//捕获1发生捕获事件 		{	 			if(TIM2CH1_CAPTURE_STA&0X40)		//捕获到一个下降沿 		 			{	  			 				TIM2CH1_CAPTURE_STA|=0X80;		//标记成功捕获到一次上升沿 				TIM2CH1_CAPTURE_VAL=TIM_GetCapture1(TIM2); 		   		TIM_OC1PolarityConfig(TIM2,TIM_ICPolarity_Rising); //CC1P=0 设置为上升沿捕获 			}else  								//还未开始,第一次捕获上升沿 			{ 				TIM2CH1_CAPTURE_STA=0;			//清空 				TIM2CH1_CAPTURE_VAL=0; 	 			TIM_SetCounter(TIM2,0); 				TIM2CH1_CAPTURE_STA|=0X40;		//标记捕获到了上升沿 		   		TIM_OC1PolarityConfig(TIM2,TIM_ICPolarity_Falling);		//CC1P=1 设置为下降沿捕获 			}		     		}			     	    					     	}       TIM_ClearITPendingBit(TIM2, TIM_IT_CC1|TIM_IT_Update); //清除中断标志位   }

前两个初始化的函数没什么好说的,看最后那个中断服务函数。分析一下测量脉冲的原理:

先看一下这个变量

u8 TIM2CH1_CAPTURE_STA=0; //输入捕获状态 //bit7:捕获完成标志  //bit6:捕获到高点平标志 //bit5~0:捕获到高电平后定时器溢出的次数

首先当第一次触发捕获中断的,程序进入中断服务函数,判断是否捕获完成,很显然还没完成(因为TIM2CH1_CAPTURE_STA初始值为0),然后进入捕捉中断服务的if语句

因为在上面的初始化函数中设置的上升沿捕捉,而第一次进来TIM2CH1_CAPTURE_STA&0X40很明显等于0,这是开始改动捕捉方式,改为下降沿捕捉(对称式捕捉?。。),最关键的是令TIM2CH1_CAPTURE_STA的第6为1,ok等待下一次捕捉中断触发就可以算一次完整的捕捉了,当然这里还有一个问题,有可能你在等的时候定时器溢出了。。这时候我们就借助更新中断(我觉得叫它溢出中断更形象啊)来统计溢出次数,溢出次数很巧妙的记在了TIM2CH1_CAPTURE_STA的0-5位,但如果时间还长TIM2CH1_CAPTURE_STA的第5位也溢出了怎么办?。。没办法,强制结束本次捕捉吧

timer.h

#ifndef _TIMER_ #define _TIMER_ #include "sys.h" void TIM1_PWM_Init(u16 arr,u16 psc); void TIM2_Cap_Init(u16 arr,u16 psc); #endif

主函数

保留了PWM输出

#include "led.h" #include "delay.h" #include "usart.h" #include "timer.h" #include "sys.h" extern u8 TIM2CH1_CAPTURE_STA;  extern u16 TIM2CH1_CAPTURE_VAL; void init(void) { 	NVIC_Configuration(); 	delay_init(); 	uart_init(9600); 	LED_Init(); 	TIM1_PWM_Init(899,0);//PWM频率80KHz 	TIM2_Cap_Init(0xFFFF,72-1);//以1MHz的频率计数 } int main(void) { 	u32 temp=0; 	init(); 	while(1) 	{ 		delay_ms(10); 		TIM_SetCompare1(TIM1,TIM_GetCapture1(TIM1)+1); 		if(TIM_GetCapture1(TIM1)==300)TIM_SetCompare1(TIM1,0);		  		if(TIM2CH1_CAPTURE_STA&0X80)//成功捕获到了一次高电平 		{ 			temp=TIM2CH1_CAPTURE_STA&0X3F; 			temp*=65536;					//溢出时间总和 			temp+=TIM2CH1_CAPTURE_VAL;		//得到总的高电平时间 			printf("HIGH:%d usrn",temp);	//打印总的高点平时间  			TIM2CH1_CAPTURE_STA=0;			//开启下一次捕获  		} 	} }